With the world’s attention on COVID-19, I believe that now is the time to talk about another pandemic that’s been happening right under our noses: antimicrobial resistance (AMR).
When infections caused by bacteria, parasites, viruses or fungi stop responding to the medicines designed to treat them, that’s AMR. Resistance builds over time through overexposure to antimicrobial drugs, such as antibiotics, or disinfectants. With ineffective treatments, these infections persist in the body and ultimately spread to others.
A major public health and economic risk
AMR is a slower-moving pandemic than COVID-19, but one that is worsening every day. A recent report by the Council of Canadian Academies said that in 2018, more than a quarter of all infections in Canada were resistant to first-line drugs. In that one year alone, 5,400 people died as a direct result of resistant infections.
Drug-resistant infections lead to longer hospital stays and potentially greater complications. Doctors might need to use alternative medicines with more side effects. These issues cost the Canadian health-care system $1.4 billion, and this will only increase.
The United Nations, the World Health Organization and even the World Bank recognize AMR as a public health and economic disaster waiting to happen. In 2016, United Kingdom economist Jim O’Neill and his team published a report stating that if we do not address the growing threat of AMR, by 2050 more people will die from drug-resistant infections than from cancer.
If left unsolved, AMR will cost the health-care system trillions of dollars and, more importantly, it will cost millions of people their lives.
Lessons from SARS-CoV-2
[ Sign up for our Health IQ newsletter for the latest coronavirus updates ]
We can learn from COVID-19. The current pandemic shows that despite all of our medical advances, we remain incredibly vulnerable to infections for which we have no therapies. However, it shows that if sufficiently motivated, we can make huge changes in short timeframes.
Antibacterial products contribute to AMR
While the key players in the global response to AMR undoubtedly include researchers, food producers, policymakers and health-care professionals, the truth is every single person has a role to play.
One thing we can all do to help combat the spread of AMR is to use regular — not “antibacterial” — soap. Good old-fashioned regular soap is antibacterial and antiviral; it dissolves the greasy membranes that surround bacteria and viruses such as SARS-CoV-2, killing them.
Conversely, antibacterial soaps usually contain additional chemicals that don’t add much in the way of hygiene, but can activate a microorganism’s efflux pumps. The pumps force disinfectants out before they can cause harm (picture someone bailing water out of a leaky boat so it doesn’t sink). They increase the ability of bacteria to fend off multiple types of toxic compounds, including antibiotics, and hasten the spread of AMR.
While COVID-19 in its own right is indeed terrifying, its implications for the future of AMR might be even worse. Widespread use of antibacterial soaps and disinfectants aside, early studies out of China show that almost all severely ill COVID-19 patients were given antibiotics (sometimes multiple antibiotics) to prevent or treat the secondary bacterial infections to which many ultimately succumbed. Unfortunately, the more antibiotics we use, the more we select for AMR.
But I choose to be an optimist. I hope that COVID-19 is a learning experience. I hope it will open the eyes of many to the life-altering power of microbes. I hope it teaches us that we need better (and faster) surveillance infrastructure for outbreaks. I hope it highlights the need for the rapid development, approval and scale up of effective diagnostics and new therapies.
To me, these steps would be encouraging progress in the global response to AMR.
Lori L. Burrows, Professor of Biocchemistry and Biomedical Sciences, McMaster University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Source: Read Full Article